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A B S T R A C T   

Background: Motor imagery (MI) based brain-computer interfaces (BCIs) have promising potentials in the field of 
neuro-rehabilitation. However, due to individual variations in active brain regions during MI tasks, the challenge 
of decoding MI EEG signals necessitates improved classification performance for practical application. 
New method: This study proposes a self-attention-based Convolutional Neural Network (CNN) in conjunction with 
a time-frequency common spatial pattern (TFCSP) for enhanced MI classification. Due to the limited availability 
of training data, a data augmentation strategy is employed to expand the scale of MI EEG datasets. The self- 
attention-based CNN is trained to automatically extract the temporal and spatial information from EEG sig-
nals, allowing the self-attention module to select active channels by calculating EEG channel weights. TFCSP is 
further implemented to extract multiscale time-frequency-space features from EEG data. Finally, the EEG features 
derived from TFCSP are concatenated with those from the self-attention-based CNN for MI classification. 
Results: The proposed method is evaluated on two publicly accessible datasets, BCI Competition IV IIa and BCI 
Competition III IIIa, yielding mean accuracies of 79.28 % and 86.39 %, respectively. 
Conclusions: Compared with state-of-the-art methods, our approach achieves superior classification results in 
accuracy. Self-attention-based CNN combining with TFCSP can make full use of the time-frequency-space in-
formation of EEG, and enhance the classification performance.   

1. Introduction 

Brain-computer interfaces (BCIs) facilitate direct communication 
between the human brain and the external environment, bypassing the 
need for peripheral nerves and muscles (Abiri et al., 2019; Liu et al., 
2022a; Xu et al., 2016). Electroencephalogram (EEG) has been widely 
utilized in motor imagery (MI)-based BCI, due to its non-invasive, 
low-cost, and portable nature (Xie et al., 2022; Zhang et al., 2021). 
EEGs for motor imagery tasks are obtained as subjects imagine their 
limbs moving without physical execution (Yu et al., 2022; Ieracitano 
et al., 2021). In addition, event-related desynchronization (ERD) 
(Graimann et al., 2010) and event-related synchronization (ERS) 
(Pfurtscheller et al., 2006, 1997) phenomena generated through MI-BCIs 
have been used to classify EEG data from a variety of tasks, thereby 
enabling individuals with motor disabilities to interact with their sur-
roundings and improve their life quality (Padfield et al., 2019; Khan 
et al., 2020). Applications of MI-BCIs span various fields, including 
orthosis treatment for tetraplegic patients (Pfurtscheller and Neuper, 
2001), quadcopter control (LaFleur et al., 2013), and functional mobility 

of exoskeletons and prostheses (Elstob and Lindo, 2016; Al-Quraishi 
et al., 2018). 

Classification methods of EEG for MI tasks can be broadly catego-
rized into traditional machine learning methods and deep learning 
methods. Traditional approaches typically involve three essential steps: 
preprocessing, feature extraction, and classification. Feature extraction 
is crucial for determining classification performance, with multiple 
methods employed to extract features and classify them using machine 
learning classifiers. For example, the common spatial pattern (CSP) is 
the most commonly used spatial feature extraction method for MI task 
classification (Koles et al., 1990; Liu et al., 2023a), discriminating EEGs 
from different classes by maximizing the variance for one class and 
minimizing it for the other. However, the conventional CSP algorithm’s 
performance is highly dependent on the frequency band and time in-
terval. To address this issue, sub-band CSP (SBCSP) was proposed by 
splitting raw EEG data into multi-level sub-bands in frequency domain 
(Novi et al., 2007). However, SBCSP ignores the relevance of different 
sub-bands, leading to the development of filter bank CSP (FBCSP) that 
incorporates a feature selection process based on mutual information 
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criteria (Ang et al., 2008). After acquiring manual features, classifiers 
such as linear discriminant analysis (LDA) (Gaur et al., 2021; Liu et al., 
2022a), support vector machines (SVM) (Jin et al., 2019; Liu et al., 
2022b), logistic regression (Ilyas et al., 2017), decision tree (DT) (Nisar 
et al., 2022), and K-nearest neighbors (KNN) (Baig et al., 2017) are 
typically employed to identify the type of MI tasks based on extracted 
features. 

The performance of traditional methods relies highly on the quality 
of hand-crafted features. As a result, deep learning (DL) approaches 
(Al-Saegh et al., 2021; Craik et al., 2019) have become mainstream in MI 
tasks due to their advantage in end-to-end classification without manual 
intervention. Schirrmeister et al (Schirrmeister et al., 2017). proposed 
the Deep ConvNet and Shallow ConvNet models specifically designed for 
decoding EEG data, achieving performance on par with FBCSP by 
leveraging EEG temporal and spatial information. EEG-Net (Lawhern 
et al., 2018) was developed from the above ConvNet models and became 
the most commonly used DL approach for EEG-based BCIs. The depth-
wise and separable convolutions of EEG-Net were applied to extract 
temporal and spatial features from EEG signals and exhibited excellent 
performance on multiple BCI tasks such as MI and P300 paradigms. Yang 
et al (Yang et al., 2022). utilized a two-branch convolutional neural 
network employing continuous wavelet transform to learn the frequency 
features in one branch and the CNN module to learn the temporal fea-
tures in another. This framework effectively captures temporal and 
frequency features, and improves the accuracy of MI-EEG decoding. Liu 
et al (Liu et al., 2022a). proposed SincNet-based hybrid neural network 
which uses SincNet to automatically identify the optimal cut-off fre-
quency band for band-pass filters with EEG CSP features inputted into 
CNN and gated recurrent unit for classification. Roy (Roy, 2022) pre-
sented a multiscale CNN model which implemented multiscale convo-
lution on each frequency band to extract semantic features from 
different frequency bands, thus achieving competitive performance in 
MI classification tasks. 

While deep learning (DL) techniques to some extent alleviate some 
limitations of traditional methods associated with hand-crafted features, 
and enhance performances through automation, they suffer from its 
shortcomings in model interpretability and robustness (Liu et al., 2021, 
2023b). The attention module was proposed to combine with a neural 
network to capture information from specific regions of images adap-
tively (Mnih et al., 2014; Bhattacharya et al., 2022). Recently, it started 
to be utilized in the field of MI EEG decoding. Liu et al (Liu et al., 2020). 
presented the spatial-temporal self-attention CNN-based architecture, 
where self-attention was utilized to capture the distinguishable 
spatial-temporal features and subsequently improve the accuracy of 
classification. Ma et al. (2022) proposed a long short-term memory 
(LSTM) approach combined with time-distributed attention, incorpo-
rating class attention mechanism and frequency band attention mech-
anism. This approach could adaptively assign different weights to 
various classes and frequency bands to achieve better performance in 
the 5-class MI scenario. Furthermore, a multi-branch EEG-Net with 
squeeze-and-excitation (SE) attention was applied to reduce the number 
of hyperparameters while increasing EEG MI classification accuracy 
(Altuwaijri, 15 et al., 2022). The promising results of attention-based 
approaches demonstrate the great potential of attention mechanisms 
in MI-EEG decoding. 

Inspired by the attention model, self-attention-based CNN is pro-
posed in this study to improve the ability of spatial features represen-
tation. Besides, time-frequency common spatial pattern (TFCSP) is 
presented to further extract the time-frequency-space information from 
EEG data, enhancing the MI-EEG classification performance. TFCSP is 
developed from traditional CSP and aims to address the shortcomings of 
traditional CSP that disregards time and frequency information. Fea-
tures obtained by TFCSP and self-attention-based CNN are concatenated 
for classification using a fully connected layer. The combination of self- 
attention-based CNN and TFCSP makes our model extract features in 
time, frequency and spatial domains from EEG signals, thus enhancing 

the MI EEG classification performance. The proposed approach is eval-
uated using two MI datasets, with ablation experiments and parameter 
visualization demonstrating the effectiveness of the attention module 
and TFCSP algorithm. This work expands upon a conference paper 
presented at the 22nd International Conference on Intelligent Infor-
matics and Biomedical Sciences (ICIIBMS Conference 2022) (Zhang 
et al., 2022). 

The remainder of this paper is organized as follows: Section II out-
lines the datasets utilized in this work, while Section III illustrates the 
details of the proposed methods. Section IV presents the experimental 
results, Section V discusses the findings, and Section VI draws 
conclusions. 

2. EEG database 

Two publicly available datasets, BCI Competition IV dataset IIa (BCI 
IV IIa) (Blanchard and Blankertz, 2004) and BCI Competition III dataset 
IIIa (BCI III IIIa) (Blankertz et al., 2006), are adopted to evaluate the 
proposed method. Both datasets have a sampled rate of 250 Hz, with 
differences in time scheme, number of channels, subjects, and trials. The 
time schemes for both datasets are provided in Fig. 1, with detailed 
information presented below. 

The BCI IV IIa dataset was recorded from nine subjects (A01-A09) 
using 25 channels. The proposed method considers only the first 22 EEG 
channels, as the remaining three channels are monopolar electrooculo-
gram channels. For each subject, two sessions of four MI tasks (left hand, 
right hand, both feet, and tongue) were conducted on two different days, 
with each session containing 288 trials (72 trials for each class). In this 
paper, the first session is used as the training set, while the other session 
is employed as the test set. 

The BCI III IIIa dataset was recorded from three subjects (k3b, k6b, 
l1b) using 60 channels. Each subject completed four types of MI tasks 
(left hand, right hand, both feet, and tongue), with the subject con-
taining 360 trials, 240 trials, and 240 trials, respectively. In this work, 
the total trials are evenly divided into a training set and a test set for 
each subject. 

In our experiment, the EEG data of BCI IV IIa dataset from t = 2 s to 
t = 6 s and the EEG data of BCI III IIIa dataset from t = 3–7 s have been 
adopted for analysis. 

3. Methods 

The block diagram of the proposed self-attention-based CNN com-
bined with TFCSP is shown in Fig. 2. The algorithm can be roughly 
divided into four steps: data augmentation (DA), TFCSP features 

Fig. 1. The timing scheme of two MI datasets. (a) The paradigm of BCI IV IIa 
dataset. (b) The paradigm of BCI III IIIa dataset. 
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extraction, self-attention-based CNN, and classifier. Specifically, DA 
strategy is employed to expand the EEG dataset before processing the 
raw EEG data. Subsequently, TFCSP features are extracted from multiple 
time and frequency EEG bands. In the step of self-attention-based CNN, 
the self-attention module is utilized to yield channel weights which can 
strengthen the spatial information of EEG. Next, the CNN module is 
combined with self-attention to extract the temporal-spatial features. 
Finally, features acquired from the self-attention-based CNN module are 
concatenated with the TFCSP features for classification using a classifier 
composed of a softmax layer. 

3.1. Data augmentation 

The performance of CNN model is closely related to the amount of 
training dataset, and the scale of MI-based EEG database is typically 
small. Thus, a data augmentation method is proposed to address data 
insufficiency and improve classification accuracy. The DA procedure is 
shown in Fig. 3. The raw EEG signal (1000 time points for 4 s data) is 
divided into four consecutive and non-overlapping segments with 250 
time points per segment. Different segments of EEG trials from the same 
class are regrouped randomly to yield new EEG epochs. The time order 
of the segments in one regrouped epoch remains consistent. Of note, 
exchanging the second segment yields the best performance compared 

to exchanging the third segment or exchanging the second and third 
segments simultaneously. The reason for the above phenomena may be 
that the second EEG segment, which is located in the middle period of 
motor imagery, is relatively stable and contains more information. 

3.2. Time-frequency common spatial pattern (TFCSP) 

Although the CSP algorithm is commonly used to extract spatial 
features from EEG, traditional CSP primarily focuses on EEG spatial 
features and disregards EEG time and frequency information. Therefore, 
time-frequency common spatial pattern (TFCSP) method is designed in 
this work. Raw EEG data is divided into time and frequency bands before 
extracting CSP features. Details of the dividing strategy in the frequency 
domain and the time domain are illustrated as Fig. 4(a) and (b), 
respectively. The frequency band between 4 and 36 Hz is partitioned 
into 11 subbands by the Butterworth filters with five orders. Under the 
bandwidth scales of 8 Hz, 16 Hz, 32 Hz, seven frequency bands, three 
subbands, and one band are acquired with 50 % frequency overlapping, 
respectively. 

The division scheme in the time domain is similar to that in the 
frequency domain. Three time segments with a length of 500 time 
points, and one time segment with a length of 1000 time points are 
acquired with 50 % time overlapping. As a result, forty-four subbands 

Fig. 2. Schematic illustration of the proposed self-attention-based CNN combining with TFCSP.  

Fig. 3. Procedure of data reconstruction in time domain to expand data.  
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(11 frequency bands × 4 time bands) can be totally obtained in time and 
frequency domain. 

After division, the CSP algorithm using One-Versus-One (OVO) 
strategy is applied to extract spatial features for each subband. In the 
context of multi-class MI tasks, OVO CSP obtains one CSP projection 
matrix by utilizing EEG signals for two different classes. This approach 
yields six spatial filters for four-class MI tasks. The steps of acquiring 
OVO CSP features are as follows:  

(1) Calculating the normalized covariance matrix Rc,i of the i-th 
trial belonging to the c-th class: 

Rc,i =
Xc,iXc,i

T

trace
(
Xc,iXc,i

T) (1)  

where Xc,i denotes the EEG segments of the i-th trial belonging to 
the c-th class and trace(X) is the sum of the elements on the di-
agonal of X.  

(2) Calculating the mixed space covariance matrix R: 

Rc =
1
k
∑k

i=1
Rc,i (2)  

Rc =
1
k
∑k

i=1
Rc,i (3)  

R =
R1 + R2

2
(4)  

where Rc denotes the mean covariance matrixes of k trials from 
the c-th class.  

(3) Utilizing the whitening matrix P and Eq. (5) to acquire the spatial 
filter WϵRch×ch: 

P =
Uc

T
̅̅̅̅
λc

√ (5)  

Sc = PRcPT = BcλcBc
T (6)  

where BC = Uc. 

W = BT P (7)  

where the Uc and λC denote the eigenmatrix and the eigenvector 
of mixed space covariance matrix R, respectively. c represents the 
class of tasks.  

(4) Obtaining the CSP features from EEG data by the projection of 
spatial filter ω ∈ Rch×2m, where ω is constructed by the first m 
rows and the last m rows of spatial filter W. 

Zc,i = ω × Xc,i (8)  

f p
c,i = log

(
var
(
Zp

c,i
)

∑2m
p=1var

(
Zp

c,i
)

)

(9)  

where fp
c,i is the p-th feature of the i-th trial belonging to the c-th class. 

The value of m is set as 2, and the number of features in each subband 
is 24 (4 features × six spatial filters). The size of the feature input is 
44 × 24 (the number of subbands × the number of CSP features for each 
band). The CSP features are flattened and concatenated with the features 
from self-attention-based CNN for further classifying. 

3.3. Self-attention-based convolutional neural network (CNN) 

The brain regions activated during the same MI task can differ among 
individuals, indicating that the motor-dependent channels are subject- 
specific. Traditional CNN lacks the ability to select EEG channels, 
resulting in suboptimal classification accuracy. Self-attention module is 
utilized to automatically identify the most useful channels, strengthen 
the weights of those channels in EEG, and improve the interpretability of 
the deep neural network model. The schematic diagram of self-attention 
module is illustrated in Fig. 5, where ch represents the number of 
channels (22 in the BCI IV IIa dataset and 60 in the BCI III IIIa dataset) 
and t (1000 in both datasets) refers to the time points of 4 s data. Raw 
EEG data of size ch × t is utilized to compute the query vector (Q), key 
vector (K), and value vector (V), with ch denoting the number of 
channels and t representing the time points. The vectors of Q, KT, and V 
are equal to the raw EEG matrix. Q = {q1, q2,…, qch} and K = {k1, k2,… 
, kch} are utilized to achieve the attention weights matrix P ∈ Rch×ch. The 
detailed calculating steps are as follows: 

S = Q × KT = {q1, q2,…, qch} ×
{

k1
T , k2

T ,…, kch
T} (10)  

P = Softmax
(

S
std(S)

)

(11)  

where S ∈ Rch×ch denotes the attention weights matrix before being 
scaled by the softmax function, and std(X) is the function of calculating 
standard deviation. 

After acquiring the attention weights matrix, the output O ∈ Rch×t is 
calculated by multiplying P and V ∈ Rch×t : 

O = P × V =

⎛

⎜
⎜
⎝

p1,1 … p1,ch

⋮ ⋱ ⋮

pch,1 ⋯ pch,ch

⎞

⎟
⎟
⎠×

⎛

⎜
⎜
⎝

v1

⋮

vch

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

p1,1v1 + ⋯ + p1,chvch

⋮

pch,1v1 + ⋯ + pch,chvch

⎞

⎟
⎟
⎠

(12) 

The output matrix encapsulates the mutual information between 
different channels. As depicted in Fig. 2, the self-attention module 
computes the output matrix, multiplies it by the learnable parameter 
γ ∈ Rch×t, and adds it to the raw EEG matrix. This process enables γ to 
automatically select the active channels and strengthen their weights. 

The self-attention-based CNN comprises a self-attention layer, two 

Fig. 4. Schematic representation of data division into time-frequency bands. 
The division strategy for the frequency domain is shown in (a), while the 
strategy for the time domain is illustrated in (b). 
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convolutional layers (Conv1 and Conv2), a batch normalization layer 
(BatchNorm), a non-linear activation layer (ReLU), and an average 
pooling layer (AvgPooling). The detailed architecture of self-attention- 
based CNN is illustrated in Table 1. A self-attention layer is designed 
to strengthen channel weights of raw EEG data. The first convolutional 
layer (Conv1) with 40 filters of size 1 × 25 is employed to extract the 
temporal information. The second convolutional layer (Conv2) with 40 
filters of size ch× 1 is utilized to acquire spatial information. The shape 
of the output is transformed from (ch, 1000, 1) to (1, 976, 40). Batch 
normalization is used to accelerate the training process and avoids the 
gradient vanishing issue. The ReLU layer serves as a non-linear activa-
tion function. The average pooling layer, with a kernel size of 1 × 75 
and a stride of 1 × 15, downsamples and reduces data redundancy. 
Features derived from self-attention-based CNN are flattened and 
concatenated with TFCSP features for final classification using a softmax 
layer consisting of four units. 

4. Results 

All experiments are implemented and tested using MATLAB R2022a 
on an Intel i9–9820X CPU, 64 GB RAM, and Nvidia RTX 2080 Super 
platform. Two datasets, BCI III IIIa and BCI IV IIa are used to validate the 
performance of the proposed approach, and classification accuracy 
serves as the evaluation metric and is calculated as follows: 

Accuracy =
TP + TN

TP + FP + TN + FN
× 100% (13)  

where TP is the number of true positives, TN is the number of true 
negatives, FP is the number of false positives, and FN is the number of 
false negatives. 

The results of traditional DL methods are displayed in the first four 
rows of Table II and Table III, while the outcomes of machine learning 
approaches are listed in the fifth and sixth rows. As shown in Table II, 
our approach outperforms EEGNet (Lawhern et al., 2018), ConvNet 
(Schirrmeister et al., 2017) and ST-Attention CNN (Liu et al., 2020), 
achieving average classification accuracy improvements of 26.11 %, 
19.54 %, 49.35 %, 27.31 % on the BCI III IIIa dataset. In comparison 

with traditional machine learning methods, such as FBCSP (Ang et al., 
2008) and the multiscale time-frequency method (Liu et al., 2022a), our 
approach achieves the highest classification accuracy for the majority of 
subjects in the BCI III IIIa dataset. For subjects ‘k6b’ and ‘l1b’ in BCI III 
IIIa dataset, our method attains the optimal classification accuracies, 
whereas for the subject ‘k3b’, our approach’s classification accuracy of is 
1.67 % lower than the best-performing approach, the multiscale 
time-frequency method (Liu et al., 2022a). Table III reveals that the 
proposed method outperforms other approaches on the BCI IV IIa 
dataset with an average accuracy of 79.28 %, and achieves the highest 
classification accuracy for each subject in the dataset. 

Although DL approaches can extract spatial-temporal features 
through time convolution and spatial filtering, our method achieves 
better classification accuracy, this may be attributed to our method’s 
superiority in extracting spatial information compared to traditional 
CNN models. Furthermore, Deep ConvNet (Schirrmeister et al., 2017), 
which comprises four convolution-pooling block modules, yields the 
lowest accuracy, possibly due to overfitting in small datasets. For the 
machine learning methods, the average accuracy of the proposed 
method is the highest, which may be because CSP-based machine 
learning methods ignore temporal information of EEG. 

In addition, the results of Table 2 and Table 3 revealed significant 
variability in the accuracy across subjects. High accuracy in MI-EEG 
decoding was exhibited in some individuals, whereas a few cases of 
lower accuracy results were also observed. Such individual differences 
may mainly be caused by the non-stationary nature of EEG signals and 
the existent of artifacts. 

The total average inference time of our model for each trial in BCI III 
IIIa is around 429.54 ms, where TFCSP feature extraction time is 
426.40 ms and self-attention-based CNN time is 3.14 ms. In addition, 
the average inference time for each trial in BCI IV IIa is about 110.53 ms, 
where TFCSP feature extraction and self-attention-based CNN take 
around 108.74 ms and 1.79 ms, respectively. 

In order to further verify the validity of each module in this paper, 
ablation experiments are conducted. As shown in Fig. 6(a), TFCSP out-
performs both the self-attention-based CNN and the combination of CSP 
and self-attention-based CNN on the BCI IV IIa dataset, achieving mean 

Fig. 5. The schematic diagram of the self-attention module.  

Table 1 
Detailed Architecture of Self-attention-based CNN.  

Layer Self-attention Conv1 Conv2 BatchNorm ReLU AvgPooling ReLU Flatten 

Input (ch, 1000, 1) (ch, 1000, 1) (ch, 976, 40) (1, 976, 40) (1, 976, 40)  (1, 976, 40) (1, 61, 40) (1, 61, 40) 
Output (ch, 1000, 1) (ch, 976, 40) (1, 976, 40) (1, 976, 40) (1, 976, 40)  (1, 61, 40) (1, 61, 40) (1, 1, 2440) 
Feature maps 1 40 40 40 40  40 40 2440 
Kernel – (1, 25) (ch, 1) – –  (1, 75) – – 
Stride – (1, 1) (1, 1) – –  (1, 15) – –  
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accuracy improvements of 1.78 % and 0.89 %, respectively. Fig. 6(b) 
shows that, for the BCI III IIIa dataset, TFCSP’s mean accuracy is 16.39 % 
higher than that of the self-attention-based CNN and 17.41 % higher 
than that of the combination of CSP and self-attention-based CNN. 
Moreover, as shown in Fig. 6(a) and (b), the self-attention-based CNN 
combined with TFCSP also enhances classification accuracies for both 
BCI IV IIa and BCI III IIIa datasets. Compared to TFCSP alone, the 
combination of self-attention-based CNN and TFCSP further improves 
the classification performance, achieving mean classification accuracy 
of 78.13 % on BCI IV IIa and 85.46 % on BCI III IIIa. Fig. 6 reveals that 
DA module contributes to the increased mean accuracy (0.53 % 
improvement on BCI III IIIa and 1.15 % improvement on BCI IV IIa) due 

to its capacity to generate additional EEG data and expand datasets 
scales. 

Moreover, the topographical maps of the learnable parameter γ in 
the self-attention module are depicted in Fig. 7 to further demonstrate 
the effectiveness of the self-attention module, highlighting specific 
activated brain regions during MI and effectively displaying the differ-
ences in active brain regions and motor-dependent EEG channels for 
various subjects. 

5. Discussions 

Traditional CSP algorithm focused on EEG spatial features, ignoring 
EEG time and frequency information, and their performance depended 
on the selected frequency band. SBCSP and FBCSP were developed from 
CSP algorithm by splitting raw EEG data into multi-level sub-bands in 
frequency domain, but neglecting the information in time domain and 
the correlation between information in frequency domain. The proposed 
TFCSP segments raw EEG data into multiple time-frequency bands 
before projecting it into CSP space, addressing the issue of CSP 
neglecting EEG time and frequency information. TFCSP can take full 
advantage of EEG time-frequency information by employing the multi- 
scale division strategy in time and frequency domains. The compara-
tive results in Fig. 6 highlight the efficacy of TFCSP features. 

The results in Fig. 6 demonstrate that the self-attention module im-
proves its ability in extracting spatial information. In contrast to tradi-
tional CNN, self-attention module captures potential spatial links 

Table 2 
The Accuracy (%) Comparison on BCI IV IIa Dataset.  

Method Subjects Mean 

A01 A02 A03 A04 A05 A06 A07 A08 A09 

EEGNet (Schirrmeister et al., 2017)  78.82  53.82  80.90  61.11  68.75  58.68  73.61  75.35  67.71  68.75 
ST-Attention CNN (Liu et al., 2023b)  72.57  54.86  78.47  55.90  69.10  50.00  69.79  67.71  68.06  65.16 
Deep ConvNet (Craik et al., 2019)  48.96  44.79  52.78  43.40  46.53  35.07  54.86  44.79  42.36  45.95 
Shallow ConvNet (Craik et al., 2019)  71.53  52.08  82.64  63.54  73.61  53.47  72.57  73.61  72.22  68.36 
FBCSP (Novi et al., 2007)  78.13  49.65  76.74  60.42  57.29  45.14  81.60  76.74  65.28  65.66 
Multiscale time-frequency method (Gaur et al., 2021)  84.03  61.81  82.99  63.89  70.14  52.08  92.01  81.25  80.21  74.27 
Proposed Method  85.76  62.50  87.15  76.04  78.82  59.72  92.36  86.46  84.72  79.28  

Table 3 
The Accuracy (%) Comparison on BCI III IIIa Dataset.  

Method Subjects Mean 

K3b K6b L1b 

EEGNet (Schirrmeister et al., 2017)  70.00  59.17  51.67  60.28 
ST-Attention CNN (Liu et al., 2023b)  80.56  64.67  58.33  66.85 
Deep ConvNet (Craik et al., 2019)  44.44  35.83  30.83  37.04 
Shallow ConvNet (Craik et al., 2019)  63.89  64.17  49.17  59.08 
FBCSP (Novi et al., 2007)  95.00  72.50  65.00  77.50 
Multiscale time-frequency method (Gaur 

et al., 2021)  
96.67  71.67  80.00  82.78 

Proposed Method  95.00  80.83  83.33  86.39  

Fig. 6. The comparison accuracy results of ablation experiments on dataset BCI IV IIa and dataset BCI III IIIa are shown in (a) and (b), respectively.  
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between channels and enhances the interpretability of model. As shown 
in Fig. 7, the learnable parameter γ in the proposed self-attention 
module, which represents the EEG channel weights of different sub-
jects, can automatically select active channels by assigning higher values 
to motor-related channels. The differences in channel weights demon-
strate that active EEG channels during motor imagery are different be-
tween diverse subjects. Therefore, the MI classification accuracies could 
be enhanced by increasing the weights of motor-dependent channels for 
different individuals. 

Though the proposed approach achieves promising performance, 
there are still some limitations in our method. First, compared with CSP 
method, TFCSP increases the computational complexity. Second, the 
experiment is conducted on subject-dependent evaluation. In addition, 
our method is only trained and tested on offline BCI datasets. In our 
future work, we will further optimize the proposed TFCSP to reduce its 
computational cost and enhance its adaptability for online BCI appli-
cations. Besides, subject-independent experiment will be conducted to 
substantiate the generality and robustness of our model across diverse 
subjects. 

6. Conclusions 

EEG-based MI BCI is a promising technology due to its broad appli-
cability in both medical and non-medical fields. However, decoding MI 
EEG signals remains challenging due to individual variations in active 
brain regions during MI tasks, leading to suboptimal performance at 
odds with practical application. In this work, a self-attention-based CNN 
combined with TFCSP is proposed to classify EEG signals in four-class MI 
tasks. The self-attention-based CNN is trained to automatically obtain 
the temporal and spatial information from EEG signals, while the self- 
attention module characterizes the active channels by quantitating 
EEG channel weights. Moreover, TFCSP is introduced to further extract 
the time-frequency-space information of EEG in a multi-scale approach. 
The integration of TFCSP and the self-attention-based CNN leverages the 
time-frequency-space information of EEG, and thus enhances the clas-
sification performance. Our method is evaluated on two datasets, BCI IV 
IIa and BCI III IIIa, achieving outstanding accuracies of 79.28 % and 
86.39 %, respectively, outperforming other state-of-the-art MI classifi-
cation methods. Furthermore, the ablation experiments also substanti-
ate the effectiveness of both TFCSP and the self-attention-based CNN. 

Fig. 7. The topographical maps of the learnable parameter in the self-attention module. (a) The topographical maps for nine subjects from BCI IV IIa dataset. (b) The 
topographical maps for three subjects from BCI III IIIa dataset. 

R. Zhang et al.                                                                                                                                                                                                                                   



Journal of Neuroscience Methods 398 (2023) 109953

8

CRediT authorship contribution statement 

Rui Zhang: Conceptualization, Data curation, Formal analysis, 
Methodology, Software, Validation, Writing - original draft. Guoyang 
Liu: Conceptualization, Methodology, Writing - review & editing. 
Yiming Wen: Formal analysis, Writing - review & editing. Weidong 
Zhou: Conceptualization, Funding acquisition, Supervision, Writing - 
review & editing. 

Declaration of Competing Interest 

The authors declared no potential conflicts of interest with respect to 
the research, author- ship, and/or publication of this article. 

Data availability 

The data that has been used is confidential. 

Acknowledgements 

The support of National Natural Science Foundation of China (No. 
62271291), the Key Program of the Natural Science Foundation of 
Shandong Province under Grant ZR2020LZH009, and the Research 
Funds of Science and Technology Innovation Committee of Shenzhen 
Municipality under Grant JCYJ20180305164357463 is gratefully 
acknowledged. 

References 

Abiri, R., Borhani, S., Sellers, E.W., Jiang, Y., Zhao, X., 2019. A comprehensive review of 
EEG-based brain-computer interface paradigms. J. Neural Eng. 16 (1), 011001. 

Al-Quraishi, M.S., Elamvazuthi, I., Daud, S.A., Parasuraman, S., Borboni, A., 2018. EEG- 
based control for upper and lower limb exoskeletons and prostheses: a systematic 
review, (in eng). Sens. (Basel, Switz.) 18 (10). 

Al-Saegh, A., Dawwd, S.A., Abdul-Jabbar, J.M., 2021. Deep learning for motor imagery 
EEG-based classification: a review. Biomed. Signal Process. Control 63. 

Altuwaijri, G.A., Muhammad, G., Altaheri, H., Alsulaiman, M., 2022. A multi-branch 
convolutional neural network with squeeze-and-excitation attention blocks for EEG- 
based motor imagery signals classification. Diagn. (Basel) 12 (4). 

Ang, K.K., Chin, Z.Y., Zhang, H., Guan, C., 2008. Filter bank common spatial pattern 
(FBCSP) in brain-computer interface. Proc. Int. Jt. Conf. Neural Netw. 2390–2397. 

Baig, M.Z., Aslam, N., Shum, H.P.H., Zhang, L., 2017. Differential evolution algorithm as 
a tool for optimal feature subset selection in motor imagery EEG, 2017/12/30/ 
Expert Syst. Appl. 90, 184–195, 2017/12/30/.  

Bhattacharya, A., Baweja, T., Karri, S.P.K., 2022. Epileptic seizure prediction using deep 
transformer model. Int J. Neural Syst. 32 (2), 2150058. 

Blanchard, G., Blankertz, B., 2004. BCI competition 2003-data set IIa: spatial patterns of 
self-controlled brain rhythm modulations. IEEE Trans. Biomed. Eng. 51 (6), 
1062–1066. 

Blankertz, B., et al., 2006. The BCI competition III: validating alternative approaches to 
actual BCI problems. IEEE Trans. Neural Syst. Rehabil. Eng. 14 (2), 153–159. 

Craik, A., He, Y., Contreras-Vidal, J.L., 2019. Deep learning for electroencephalogram 
(EEG) classification tasks: a review. J. Neural Eng. 16 (3), 031001. 

Elstob, D., Lindo Secco, E., 2016. A low cost eeg based Bci prosthetic using motor 
imagery. Int. J. Inf. Technol. Converg. Serv. 6 (1), 23–36. 

Gaur, P., Gupta, H., Chowdhury, A., McCreadie, K., Pachori, R.B., Wang, H., 2021. 
A sliding window common spatial pattern for enhancing motor imagery 
classification in EEG-BCI. IEEE Trans. Instrum. Meas. 70, 1–9. 

Graimann, B., Allison, B., Pfurtscheller, G., 2010. Brain–computer interfaces: a gentle 
introduction. In: Graimann, B., Pfurtscheller, G., Allison, B. (Eds.), Brain-Computer 
Interfaces: Revolutionizing Human-Computer Interaction. Springer Berlin 
Heidelberg, Berlin, Heidelberg, pp. 1–27. 

Ieracitano, C., Morabito, F.C., Hussain, A., Mammone, N., 2021. A hybrid-domain deep 
learning-based BCI for discriminating hand motion planning from EEG sources (Sep). 
Int J. Neural Syst. 31 (9), 2150038. 

Ilyas, M.Z., Saad, P., Ahmad, M.I., Ghani, A., 2017. Classification of EEG signals for 
brain-computer interface applications: performance comparison. 2016 Int. Conf. 
Robot. Autom. Sci. (ICORAS). 

Jin, J., Miao, Y., Daly, I., Zuo, C., Hu, D., Cichocki, A., 2019. Correlation-based channel 
selection and regularized feature optimization for MI-based BCI. Neural Netw. 118, 
262–270, 2019/10/01/.  

Khan, M.A., Das, R., Iversen, H.K., Puthusserypady, S., 2020. Review on motor imagery 
based BCI systems for upper limb post-stroke neurorehabilitation: from designing to 
application. Comput. Biol. Med. 123, 103843. 

Koles, Z.J., Lazar, M.S., Zhou, S.Z., 1990. Spatial patterns underlying population 
differences in the background EEG, (in eng). Brain Topogr. 2 (4), 275–284. 

LaFleur, K., Cassady, K., Doud, A., Shades, K., Rogin, E., He, B., 2013. Quadcopter control 
in three-dimensional space using a noninvasive motor imagery-based brain- 
computer interface. J. Neural Eng. 10 (4), 046003. 

Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J., 2018. 
EEGNet: a compact convolutional neural network for EEG-based brain-computer 
interfaces. J. Neural Eng. 15 (5), 056013. 

Liu, C., et al., 2022a. SincNet-based hybrid neural network for motor imagery EEG 
decoding. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 540–549. 

Liu, G., Han, X., Tian, L., Zhou, W., Liu, H., 2021. ECG quality assessment based on hand- 
crafted statistics and deep-learned S-transform spectrogram features. Comput. 
Methods Prog. Biomed. 208, 106269. 

Liu, G., Tian, L., Zhou, W., 2022a. Multiscale time-frequency method for multiclass 
motor imagery brain computer interface. Comput. Biol. Med. 143, 105299. 

Liu, G., Hsiao, J., Zhou, W., Tian, L., 2023a. MartMi-BCI: a matlab-based real-time motor 
imagery brain-computer interface platform. SoftwareX 22, 101371. 

Liu, G., Zhang, J., Chan, A.B., Hsiao, J., 2023b. Human attention-guided explainable AI 
for object detection. Proc. Annu. Meet. Cogn. Sci. Soc. 45 (45). 

Liu, X., Shen, Y., Liu, J., Yang, J., Xiong, P., Lin, F., 2020. Parallel spatial-temporal self- 
attention CNN-based motor imagery classification for BCI, (in eng). Front Neurosci. 
14, 587520. 

Liu, Y., Wang, Z., Huang, S., Wang, W., Ming, D., 2022b. EEG characteristic investigation 
of the sixth-finger motor imagery and optimal channel selection for classification. 
J. Neural Eng. 1, 19. 

Ma, X., Qiu, S., He, H., 2022. Time-distributed attention network for EEG-based motor 
imagery decoding from the same limb. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 
496–508. 

V. Mnih, N. Heess, A. Graves, and K. Kavukcuoglu, Recurrent Models of Visual Attention, 
p. arXiv:1406.6247Accessed on: June 01, 2014[Online]. Available: 〈https://ui.adsab 
s.harvard.edu/abs/2014arXiv1406.6247M〉. 

Nisar, H., Wee Boon, K., Kim Ho, Y., Shen Khang, T., 2022. Brain-computer interface: 
feature extraction and classification of motor imagery-based cognitive tasks, 
presented at the 2022. IEEE Int. Conf. Autom. Control Intell. Syst. (I2CACIS). 

Novi, Q., Guan, C., Dat, T.H., Xue, P., 2007. Sub-band common spatial pattern (SBCSP) 
for brain-computer interface. 2007 3rd Int. IEEE/EMBS Conf. Neural Eng. 204–207. 

Padfield, N., Zabalza, J., Zhao, H., Masero, V., Ren, J., 2019. EEG-based brain-computer 
interfaces using motor-imagery: techniques and challenges. Sens. (Basel, Switz.) 19 
(6). 

Pfurtscheller, G., Neuper, C., 2001. Motor imagery and direct brain-computer 
communication. Proc. IEEE 89 (7), 1123–1134. 

Pfurtscheller, G., Neuper, C., Flotzinger, D., Pregenzer, M., 1997. EEG-based 
discrimination between imagination of right and left hand movement, (in eng). 
Electroencephalogr. Clin. Neurophysiol. 103 (6), 642–651. 

Pfurtscheller, G., Brunner, C., Schlogl, A., Lopes da Silva, F.H., 2006. Mu rhythm (de) 
synchronization and EEG single-trial classification of different motor imagery tasks. 
Neuroimage 31 (1), 153–159. 

Roy, A.M., 2022. An efficient multi-scale CNN model with intrinsic feature integration 
for motor imagery EEG subject classification in brain-machine interfaces. Biomed. 
Signal Process. Control 74. 

Schirrmeister, R.T., et al., 2017. Deep learning with convolutional neural networks for 
EEG decoding and visualization. Hum. Brain Mapp. 38 (11), 5391–5420. 

Xie, P., Hao, S., Zhao, J., Liang, Z., Li, X., 2022. A spatio-temporal method for extracting 
gamma-band features to enhance classification in a rapid serial visual presentation 
task. Int J. Neural Syst. 32 (3), 2250010. 

Xu, F., Zhou, W., Zhen, Y., Yuan, Q., Wu, Q., 2016. Using fractal and local binary pattern 
features for classification of ECOG motor imagery tasks obtained from the right brain 
hemisphere. Int. J. Neural Syst. 26 (6), 1650022. 

Yang, J., Gao, S., Shen, T., 2022. A two-branch CNN fusing temporal and frequency 
features for motor imagery EEG decoding. Mar 8 Entropy (Basel) vol. 24 (3). Mar 8.  

Yu, Z., Chen, W., Zhang, T., 2022. Motor imagery EEG classification algorithm based on 
improved lightweight feature fusion network. Biomed. Signal Process. Control 75. 

Zhang, R., et al., 2022. Motor imagery EEG classification with self-attention-based 
convolutional neural network. 2022 7th Int. Conf. Intell. Inform. Biomed. Sci. 
(ICIIBMS) 7, 195–199. 

Zhang, X., Yao, L., Wang, X., Monaghan, J., McAlpine, D., Zhang, Y., 2021. A survey on 
deep learning-based non-invasive brain signals: recent advances and new frontiers. 
J. Neural Eng. 18 (3). 

R. Zhang et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref1
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref1
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref2
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref2
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref2
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref3
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref3
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref4
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref4
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref4
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref5
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref5
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref6
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref6
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref6
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref7
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref7
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref8
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref8
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref8
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref9
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref9
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref10
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref10
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref11
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref11
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref12
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref12
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref12
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref13
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref13
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref13
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref13
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref14
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref14
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref14
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref15
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref15
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref15
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref16
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref16
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref16
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref17
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref17
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref17
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref18
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref18
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref19
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref19
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref19
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref20
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref20
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref20
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref21
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref21
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref22
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref22
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref22
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref23
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref23
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref24
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref24
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref25
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref25
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref26
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref26
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref26
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref27
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref27
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref27
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref28
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref28
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref28
https://ui.adsabs.harvard.edu/abs/2014arXiv1406.6247M
https://ui.adsabs.harvard.edu/abs/2014arXiv1406.6247M
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref29
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref29
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref29
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref30
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref30
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref31
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref31
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref31
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref32
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref32
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref33
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref33
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref33
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref34
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref34
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref34
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref35
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref35
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref35
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref36
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref36
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref37
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref37
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref37
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref38
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref38
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref38
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref39
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref39
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref40
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref40
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref41
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref41
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref41
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref42
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref42
http://refhub.elsevier.com/S0165-0270(23)00172-3/sbref42

	Self-attention-based convolutional neural network and time-frequency common spatial pattern for enhanced motor imagery clas ...
	1 Introduction
	2 EEG database
	3 Methods
	3.1 Data augmentation
	3.2 Time-frequency common spatial pattern (TFCSP)
	3.3 Self-attention-based convolutional neural network (CNN)

	4 Results
	5 Discussions
	6 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	References


